Terrestrial exospheric hydrogen density distributions under solar minimum and solar maximum conditions observed by the TWINS stereo mission

نویسنده

  • J. H. Zoennchen
چکیده

Circumterrestrial Lyman-α column brightness observations above 3 Earth radii (Re) have been used to derive separate 3-D neutral hydrogen density models of the Earth’s exosphere for solar minimum (2008, 2010) and near-solarmaximum (2012) conditions. The data used were measured by Lyman-α detectors (LAD1/2) onboard each of the TWINS satellites from very different orbital positions with respect to the exosphere. Exospheric H atoms resonantly scatter the near-line-center solar Lyman-α flux at 121.6 nm. Assuming optically thin conditions above 3Re along a line of sight (LOS), the scattered LOS-column intensity is proportional to the LOS H-column density. We found significant differences in the density distribution of the terrestrial exosphere under different solar conditions. Under solar maximum conditions we found higher H densities and a larger spatial extension compared to solar minimum. After a continuous, 2-month decrease in (27 day averaged) solar activity, significantly lower densities were found. Differences in shape and orientation of the exosphere under different solar conditions exist. Above 3Re, independent of solar activity, increased H densities appear on the Earth’s nightside shifted towards dawn. With increasing distance (as measured at 8Re) this feature is shifted westward/duskward by between −4 and −5 with respect to midnight. Thus, at larger geocentric distance the exosphere seems to be aligned with the aberrated Earth–solar-wind line, defined by the solar wind velocity and the orbital velocity of the Earth. The results presented in this paper are valid for geocentric distances between 3 and 8Re.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental study of exospheric hydrogen atom distributions by Lyman‐alpha detectors on the TWINS mission

[1] Exospheric atomic hydrogen (H) resonantly scatters solar Lyman‐a (121.567 nm) radiation, observed as the geocorona. Measurements of scattered solar photons allow one to probe time‐varying three‐dimensional distributions of exospheric H atoms. The Two Wide‐angle Imaging Neutral‐atom Spectrometers (TWINS) mission images the magnetosphere in energetic neutral atom (ENA) fluxes and additionally...

متن کامل

One-Dimensional Electrolyzer Modeling and System Sizing for Solar Hydrogen Production: an Economic Approach

In this paper, a solar based hydrogen production in the city of Tehran, the capital of Iran is simulated and the cost of produced hydrogen is evaluated. Local solar power profile is obtained using TRNSYS software for a typical parking station in Tehran. The generated electricity is used to supply power to a Proton Exchange Membrane (PEM) electrolyzer for hydrogen production. Dynamic nature of s...

متن کامل

پرتاب‌های بزرگ و کوچک مقیاس جرم از تاج خورشید

 The large and small Coronal Mass Ejections (CMEs) and mini-CMEs are observed by the Extreme Ultra Violet Imager (EUVI) on the Solar Terrestrial Relation Observatory (STEREO). These eruption events are usually associated with dimming and wave-like brightenings. Here, the images of the full sun on 26 Apr 2008 with STEREO spacecraft (behind) with the cadences of 10 minutes and 150 seconds and pix...

متن کامل

Influence of the solar EUV flux on the Martian plasma environment

The interaction of the solar wind with the Martian atmosphere and ionosphere is investigated by using threedimensional, global and multi-species hybrid simulations. In the present work we focus on the influence of the solar EUV flux on the Martian plasma environment by comparing simulations done for conditions representative of the extrema of the solar cycle. The dynamics of four ionic species ...

متن کامل

The nightside ionosphere of Venus under varying levels of solar Euv flux

Solar activity varied widely over the 14 year lifetime of the Pioneer Venus Orbiter, and these variations directly affected the properties of the nightside ionosphere. At solar maximum, when solar EUV was largest, the Venus ionosphere was found to extend to highest altitudes and nightward ion transport was the main source of the nightside ionosphere. At solar minimum, nightward ion transport wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015